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This paper considers the time evolution of disperse systems in which binary coagulation and a source of
fresh particles govern the temporal changes to the particle mass spectra. The source is assumed to produce
fresh particles at a constant rate. The Smoluchowski equation describing the time evolution of the particle mass
spectrum is solved exactly for the coagulation kernel proportional to the product of masses of two coalescing
particles. It is shown that after a critical time tc a gel forms in the system and the sol spectrum becomes an
algebraic function of the particle mass at t= tc. It begins to shrink after the critical time due to the mass loss
supporting the growth of the gel mass. The pre- and post-critical behavior of the mass spectrum and its integral
characteristics �total particle number and mass concentrations� are investigated for the source productivity I�g�
dropping down algebraically with the particle mass g as I�g��g−�. The critical particle mass spectrum is
proved to be a universal function of g �it drops down as g−5/2� if the third moment of I�g� is finite ���4�.
Otherwise �3���4� this and other critical exponents begin to depend on �. Still the mass spectrum remains
self-similar, i.e., it depends on a combination of g and t. At smaller � the gelation process is shown to begin
at t=0. All critical characteristics of the particle mass spectrum are determined for this case.
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I. INTRODUCTION

Let us consider a system of disperse particles comprising
g1 ,g2 , . . . ,gk , . . . monomeric units. This system is assumed
to evolve with time due to the processes of coalescence: two
colliding particles coalesce forming a daughter one with the
mass equal to the total mass of two mother particles,

�l� + �m� → �l + m� . �1�

Here �x� denotes a particle containing x monomeric units.
This process is referred to as coagulation. The coagulating
systems are described by the mass spectrum cg�t�, the con-
centration of the particles comprising g monomers �g-mers�.
There is not a problem to write down the kinetic equation
governing the time evolution of the particle mass spectrum,

dcg

dt
= Ig +

1

2�
l=1

g−1

K�g − l,l�cg−lcl − cg�
l=1

	

K�g,l�cl. �2�

This is the famous Smoluchowski’s equation. Here the co-
agulation kernel K�g , l� is the transition rate for the process
given by Eq. �1�. The term Ig on the right-hand side �RHS� of
Eq. �2� is the rate of production of fresh particles of mass g.
The second term describes the gain in the g-mer concentra-
tion cg�t� due to coalescence of �g− l�- and l-mers, while the
last one is responsible for the losses of g-mers due to their
sticking to all other particles. More details can be found in
review articles �1,2� and books �3–5�.

Although the role of coagulation processes is widely rec-
ognized and has been thoroughly discussed in just cited re-
views and books, very little attention was given to the sys-
tems where not mere coagulation that forms the mass
distribution of particles. In particular, the processes in which
a source adds fresh particles in the coagulating system were

passed over in attention. Still such systems are also of great
importance. It is enough to mention secondary atmospheric
aerosols that form due to some intra-atmospheric chemical
and photochemical processes producing tiny embryos. These
embryos then grow by condensation and coagulation and
give the life to larger aerosol particles �see, e.g., Ref. �5��.
The source term always presents in the atmospheric aerosol
models �5,6�. There are many other examples.

The steady-state regimes in source-enhanced coagulating
systems were first considered in Refs. �7,8�. The generating
function method of Ref. �9� had been used in Ref. �8� for a
general analysis of the shape of steady-state mass spectra.
The results of this work had been applied for explaining the
nature of algebraic particle size distributions observed in the
atmosphere. The self-preserving regimes of coagulation in
the presence of a source of fresh particles were investigated
in Ref. �10� and especially in Ref. �11� �see also references
therein�.

Already very long ago it became clear �12,13� that the
Smoluchowski approach to the description of the kinetics of
coagulation sometimes leads to a paradox: the total particle
mass concentration ceases to conserve after a finite interval
of time. The reason for this is now clear. The coagulation
process can develop so swiftly that some objects invisible in
the thermodynamic limit appear. Meanwhile, the Smolu-
chowski approach entirely relies upon the thermodynamic
notion like g-mer concentrations. The situations where very
large objects with zero �in the thermodynamic limit� concen-
tration result from the coagulation process cannot be de-
scribed within this classical approach. Still the kinetic equa-
tion �2� describes well the precritical behavior of the
coagulating system and the kinetics of the sol part �i.e., the
behavior of the mass spectrum of the particles with thermo-
dynamically large population numbers� even after the critical
time.

The Smoluchowski approach had been used many times
for the description of the sol-gel transition in free �no source�
coagulating systems �1,2,14�. Another approach based on a*Electronic address: alex.lushnikov@helsinki.fi
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stochastic consideration �15� had been used by me �16–18�
for a more consecutive and full analysis of the sol-gel tran-
sition. Overwhelming majority of the constructive results in
studying the sol-gel transition had been obtained for the ker-
nel proportional to the product of the masses of a pair of
coalescing particles.

Only two attempts �19,20� to study the gelation in the
source-enhanced coagulating systems with the kernel propor-
tional to the product of masses of coalescing particles are
known to me. Reference �19� contains the results �with no
derivation and analysis� of the solution to Eq. �2� for initially
monodisperse system. The author of Ref. �20� reported on a
steady-state asymptotic behavior of the sol spectrum at the
post-critical period.

In this paper a full analysis of the gelation transition is
given for the coagulating system with the kernel

K�g,l� = 
gl �3�

starting with the Smoluchowski approach. Here 
 is a dimen-
sional constant.

Of course, it would be better to start with the stochastic
approach of Refs. �15–18� that allows for a more complete
reproduction of the picture, especially at the transition point.
But if we sacrifice the vicinity of the transition point, then
the Smoluchowski approach can be applied for determining
all macroscopic characteristics of the coagulating system be-
low and even above the transition point.

The paper is organized as follows. The next section intro-
duces the basic equations describing the coagulation process
in the presence of a spatially uniform source of fresh par-
ticles. We demonstrate that the use of the kernel given by Eq.
�3� leads to a divergency of the second moment of the par-
ticle mass spectrum after a finite interval of time tc. This
effect is associated with the appearance of a gel at t= tc. In
this section two possible scenarios of gelation are discussed.
The exact solution to the Smoluchowski equation is found in
Sec. III for nonzero external source of particles and the co-
agulation kernel given by Eq. �3�. To this end the Laplace
transform of the particle mass spectrum is introduced. This
step reduces the integrodifferential kinetic equation to a par-
tial differential equation which is then solved exactly. The
details of the solution are given in Appendix A. The
asymptotic analysis of the solution performed in Sec. IV
shows that the particle mass spectrum at the critical point
displays the universal behavior cg�tc��g−5/2, exactly as in the
case of free coagulation. The analysis of the sol-gel transition
for sources slowly damping with the particle size �Ig�g−��
demonstrates that if the source has the divergent third mo-
ment, i.e., Ig damps as a power of the particle mass with the
exponent � within the interval 3���4, then the universal-
ity of the critical behavior breaks down and the critical ex-
ponent in the power dependence of the critical mass spec-
trum begins to depend on �. For the sources with the
divergent second moment �2���3� the gelation begins at
t=0. Section V discusses the time behavior of the total par-
ticle number and mass concentrations. It is demonstrated
how the gel forms in the coagulating system. A short resume
of the results and a further discussion of the sol-gel transition
are given in the concluding Sec. VI.

II. BASIC EQUATION

In what follows we consider the integral version of the
Smoluchowski equation with a steady-state source �it follows
from Eq. �2� after replacing the sums with the integrals� and
specify the kernel as K�gl�=
gl. Instead of Eq. �2� we thus
write

�tc�g,t� = I�g� +



2
�

0

g

�g − l�lc�g − l,t�c�l,t�dl − 
Mgc�g,t� ,

�4�

where I�g� is the rate of production of fresh g-mers, M
=M�t�=�0

	gc�g , t�dg is the total mass concentration of the
coagulating system.

Equation �4� should be supplemented with the initial con-
dition. In what follows we apply the zero initial condition
�no particles exist at t=0�:

c�g,0� = 0. �5�

A. Gelation catastrophe

One expects that M�t�= I1t, where I1 is the first moment of
the source distribution. However, as we will see below, this
equality holds only during a finite interval of time t� tc.
After this moment �0

	gc�g , t�dg� I1t. Moreover, the second
moment of the particle mass distribution diverges at t= tc.
Indeed, let us multiply both sides of Eq. �4� by g2 and inte-
grate over all g. We then come to the equation for the second
moment of the particle mass spectrum Q�t�=�0

	g2c�g , t�dg,

dtQ = I2 + 
Q2. �6�

Here I2 is the second moment of I�g�. Other moments are
defined as

Is�t� = �
0

	

gsI�g�dg . �7�

The solution to Eq. �6� is �Q�0�=0�

Q�t� =�I2



tan�t�
I2� . �8�

The condition Q�tc�=	 defines the position of the critical
point,

tc =
�

2�
I2

. �9�

This catastrophe is attributed to the appearance of a gel,
an object that cannot be described within the scopes of the
Smoluchowski approach. The desire to know what the gel
could be is quite understandable and natural. The clear an-
swer to this question had been given about three decades ago
in Ref. �16�. The gel can be a single giant particle whose
mass is comparable to the total mass of the whole coagulat-
ing system �active gel�. This particle is not noticeable in the
thermodynamic limit �its concentration is zero� but the mass
is so large that it is able to affect the dynamics of the coagu-
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lation process. The details may be seen in Refs. �17,18�.
An alternative introduction of the gel uses truncated mod-

els of coagulating systems, where an upper cutoff mass G is
introduced. The particles with masses exceeding G are as-
sumed to be instantly removed from the system and to form
a deposit whose spectrum stretches from G to 2G. This de-
posit models the passive gel �21� as G→	. It is essential to
emphasize that the coagulation of the sol �a collection of
particles with nonzero concentrations� can always be de-
scribed by the Smoluchowski equation.

B. Scenarios of gelation

We will see in Sec. V that the mass spectrum found from
Eq. �4� does not conserve the total mass concentration de-
fined as �0

	gc�g , t�dg �it should be equal to I1t� and a gel is
introduced by hand for correcting this defect of the Smolu-
chowski theory. At this step it should be emphasized that the
introduction of the gel is a rather artificial step which does
not follow from the Smoluchowski equation. There are two
methods for introducing the gel:

�i� The active gel is able to grow by coalescing with
the sol particles. The mass concentration M�t� in Eq. �4�
includes then the mass of the gel,

M�t� = I1t = Msol�t� + Mgel�t� . �10�

Here Mgel is the mass of the gel.
�ii� An alternative way for introducing the gel is to

accept that the mass M�t� entering Eq. �4� is the mass of the
sol fraction alone,

M�t� = Msol�t� = �
0

	

c�g,t�gdg . �11�

The fact that Msol�t� drops down with time may be attributed
to the formation of a gel, whose mass, however, does not
appear in Eq. �4�. Thus the gel does not affect actively the
post-critical behavior of the sol mass spectrum �the passive
gel�. Nevertheless, the total mass concentration includes the
mass hidden in the gel and remains equal to I1t.

In the pregelation period the definitions Eqs. �10� and �11�
of the total mass concentration M�t� coincide,

M�t� = �
0

	

c�g,t�gdg = I1t . �12�

A more thorough discussion of this problem is left up to
Sec. V. Both these scenarios had been discussed in Ref. �14�
�see also earlier citations therein� for free coagulating sys-
tems. The present paper considers only the first scenario �Eq.
�10��.

III. EXACT SOLUTION

For the Laplace transform of the mass spectrum

F�p,t� = �
0

	

c�g,t�e−pgdg �13�

we have from Eq. �4�,

�tF�p,t� = I�p� +



2
��pF�p,t��2 + 
M�t��pF�p,t� , �14�

where I�p� is the Laplace transform of the source function,

I�p� = �
0

	

I�g�e−pgdg . �15�

For a constant growth rate of the total mass concentration the
solution to Eq. �14� can be found in the form �the proof is
given in Appendix A�

F�p,t� = tA��� − �
p

��2



�A��� − A�s��ds + Q�p,t� ,

�16�

where

A�p� = I�p� + Ṁp , �17�

Q�p,t� = − pM�t� −



2
�

0

t

M2�t��dt�, �18�

and the function �=��p , t� appearing in Eq. �16� is intro-
duced in such a way that ��F�p , t�=0. Hence

t =
1
�

�

p

� ds
�2�A��� − A�s��

. �19�

This equation defines the function ��p , t�. The term Q does
not contribute to the particle mass spectrum and serves only
for normalization purposes �the function F�p , t� should re-
produce correctly the particle mass and number concentra-
tions�.

Instead of c�g , t� we can introduce

b�g,t� = gc�g,t� . �20�

The Laplace transform for b�g , t� is readily expressed in
terms of F,

G�p,t� = �
0

	

b�g,t�e−pgdg = − �pF�p,t� . �21�

On differentiating Eq. �14� with respect to p yields the equa-
tion for G,

�tG = 
�M − G��pG − I�. �22�

The solution to this equation has the form

G�p,t� = M�t� −�2



�A��� − A�p�� . �23�

This result immediately follows from Eqs. �16�, �19�, and
�21�.

We also introduce 
��� as


��� =
1
�

�

0

� ds
�2�A��� − A�s��

. �24�

Then Eq. �19� takes the form
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t = 
��� −
1
�

�

0

p ds
�2�A��� − A�s��

. �25�

The function 
��� plays an important role, for it defines the
time dependence of ��t ,0�=�0�t� playing the role of the order
parameter in the sol-gel transition.

Equation �23� allows for restoring the particle mass spec-
trum,

c�g,t� = −
1

2�ig
�

C

�2



�A„��p,t�… − A�p��epgdp . �26�

As usual, the integration contour C in the complex plane p
goes from −i	 to i	 and passes to the right of all singulari-
ties of the integrand.

IV. ASYMPTOTIC ANALYSIS

The singularities of the functions F or G nearest to p=0 in
the complex plane p define the asymptotic behavior of the
particle mass spectrum at large masses. We analyze these
singularities starting with Eqs. �19� and �23�. It is convenient
to introduce

Ã�x� = A�x� − A�0� = I�x� − I0 + I1x . �27�

It is worthwhile to notice that A���−A�x�= Ã���− Ã�x�. Thus
the spectrum given by Eq. �26� is independent of the first two
moments I0 and I1.

In Appendix B I will show that at small p the function
��p , t� �see Fig. 1� is also small, but much larger than p �see
Eq. �B13��. We thus can ignore A�p� in expression �23� and
rewrite the part of G�p , t� responsible for the asymptotic be-
havior of the particle mass spectrum as

G�p,t� 	 − �2Ã���/
 . �28�

The constant term in Eq. �23� does not contribute to the mass
spectrum.

In what follows we consider separately two different
types of sources:

�i� The source producing only small particles I�g�
�Ag−�3+�� �0���1�, so at least three first moments I0, I1,
and I2 of the function I�g� are finite �in what follows such
sources are referred to as narrow sources�. The expansion in

s of Ã�s� can be thus written as

Ã�s� = A�s� − I0 = I2s2/2 ! − a�s2+� + ¯ . �29�

Here a� is a constant. The generating function in this case is
approximated as

G�p,t� 	 − �2Ã���/
 	 − ��p,t��I2/
 . �30�

Because the second moment I2 is finite, gelation begins after
a finite moment of time given by Eq. �9�.

�ii� The source with a more flat algebraic tail I�g�
�Ag−�2+�� �0���1� �wide source, in what follows�. Such
the source has the divergent second moment. Thus, accord-
ing to Eq. �9�, the gelation begins from the very outset of the
coagulation process. In this case,

Ã�s� = A��� − I0 = b�s1+� + ¯ . �31�

The approximate generating function in this case looks as
follows:

G�p,t� 	 −�2Ã���



	 − ���p,t���1+��/2�2b�



. �32�

A. Narrow source

Here we consider the case, where the second moment of
I�g� is finite but the third one diverges. In this case the equa-
tion for ��p , t� is derived in Appendix B �Eq. �B12�� and has
the form

R�1+� − 
� − p = 0, �33�

where 
= �t− tc� / tc and R is a constant defined by Eq. �B10�.
The solution to Eq. �33� can be expressed in terms of a
universal function z�x�,

��p,t� = �


/R�1/�z� pR1/�




��+1�/�� . �34�

The function z�x� meets the equation

z1+� − sgn�
�z − x = 0, �35�

where, as usual, sgn�
�=1 for positive 
 and sgn�
�=−1 oth-
erwise.

Once the function z�x� is known, the inversion theorem
yields the mass spectrum,

FIG. 1. The dependence of the function ��p , t� on time. It is seen
that as p→0 the curves approach to their limiting dependence �0�t�.
The latter function plays the role of an order parameter in the sol-
gel transition. It remains zero at the precritical period t� tc. Calcu-
lations are done for initially monodisperse particles. Here time is
measured in units of �
I2�−1/2. The function ��p , t� is dimensionless.
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c�g,
� =



1/�

R1/�g0g
�I2



Z� g

g0
� , �36�

with z�x� being the Laplace transform of Z�s�. Equation �34�
defines the characteristic mass g0=g0�
�,

g0�
� = R1/�


−�1+��/�. �37�

Putting p=0 in Eq. �33� yields the time dependence of the
order parameter,

�0�
� = ��p,0� = R−1/�


1/�. �38�

At 
�0 Eq. �33� has only the zero solution �0=0.
Let us investigate the postcritical behavior �
�0� of the

mass spectrum. To this end we find the solution to Eq. �35� in
the limit of small x. We apply the iterative procedure zk+1

1+�

=zk+x with z0=1 �this is the solution of Eq. �35� at x=0�.
The first approximation is enough for our purposes,

z�x� = �1 + x�1/�1+��. �39�

It is not difficult to restore the postcritical mass spectrum,

c�g,
� � g−�3+2��/�1+��e−g/g0�
�. �40�

It is important to notice that the proportionality coefficient in
this equation is independent of 
. In deriving Eq. �40� we use
the Laplace inversion of p�,

p� �
sin���� + 1��

�
��� + 1�g−��+1�. �41�

This formula will be of use in our further analysis.
At 
�0 �the precritical stage� we investigate the structure

of the singularity starting with Eq. �33� and assuming that


 
��p. We solve this equation by iterations taking �
= �p /R�1/�1+�� as the starting approximation.

The second iteration gives the final result,

��p,
� 	 p1/�1+�� −

p�1−��/�1+��

�1 + ��R1/�1+�� . �42�

Applying Eqs. �41� and �36� yields the asymptotic mass
spectrum,

c�g,
� � g−�3+2��/�1+���1 − �����g/g0��/�1+���

	 g−�3+2��/�1+��exp
− �����g/g0�
���/�1+��� , �43�

where after a tedious algebra we find

���� =
��2/�1 + ���
��1/�1 + ���

sin���1 − ��/�1 + ���
sin��/�1 + ���

.

The coefficient ����=0 at �=1. But in this case Eq. �33� is
solved analytically. The result is

��p,
� =
1

2
��
2 + 4p + 
� . �44�

The order parameter is

�0�
� =
1

2
�


 + 
� . �45�

At 
�0 the order parameter is equal to zero, as should it be.

Equation �45� allows for restoring the particle mass spec-
trum in pre- and postgelation period,

c�g,t� 	
�3

2

I2

��
I3

g−5/2e−g/g0�t� � g−5/2e−g/g0�t�, �46�

where

g0�t� =
4I3

3I2

1

cos2�t�
I2�
	

4I3

3
I2
2

1

�t − tc�2 �
1


2 . �47�

Here instead of the coefficient a1 we introduced the third
moment I3=3!a1.

B. Wide sources

If the second moment I2 diverges, the gel formation be-
gins at t=0. There is no pregelation stage in this case. As
follows from Eq. �B18� of Appendix B

�0�t� = �t�b�
/c��2/�1−��. �48�

The Laplace transform of the asymptotic particle mass spec-
trum is given by Eq. �B20�,

��p,t� 	 �0�t��1 +
p

c��0�t�
�2/�1−��

. �49�

The spectrum corresponding to this ��p , t� has the form �see
Eq. �32��

c�g,t� � t�1+��/�1−��g−�3−��/�1−��e−g/g0�t�, �50�

where

g0�t� = c��0�t� . �51�

V. RESULTS AND DISCUSSION

A. Pregelation stage

Multiplying both sides of Eq. �4� by g and integrating
over all g gives

Ṁ = I1 or M = I1t , �52�

i.e., in the pregelation period the total mass concentration
grows linearly with time. This result is quite natural. Next,
on integrating Eq. �4� over all g yields the equation for the
particle number concentration

Ṅ = I0 −



2
M2, �53�

where N�t�=�0
	c�g , t�dg. Equation �13� gives in the pregela-

tion period �t� tc�

N�t� = I0t −



6
I1

2t3. �54�

One sees that N�t� could become negative at t� tN

=�6I0 /
I1
2. This, however, never happens, for tN� tc or, after

some trivial algebra �I1 /2�6��I0I2. Indeed, I0I2� I1
2 which

immediately follows from the inequalities �0
	�k
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− l�2I�k�I�l�dkdl�0 and I�x��0. Below we will see that at
t� tc the expression for N�t� and M�t� differ from those
given by Eqs. �52� and �54�.

If the three first moments of the source function I�g� are
finite, then as is seen from Eq. �46�, the mass spectrum in the
pregelation stage grows wider with time. In the vicinity of
the critical point tc it repeats the shape of the spectrum found
for free coagulating system with the product kernel

c�g,t� � g−5/2e−g/g0. �55�

At the critical point this spectrum drops down with the par-
ticle mass as g−5/2, as in the case of free coagulation. As is
seen from Eq. �46�, the coefficient before g−5/2 depends on
the second and third moments I2 and I3 of the source rate
distribution I�g� and is independent of I1 and I0.

If the third moment of I�g� diverges, then the precritical
mass spectrum is given by Eq. �43�,

c�g,
� � g−�3+2��/�1+��exp
− �����g/g0�
���/�1+��� , �56�

with ����=0 at �=1. The critical mass spectrum now is no
longer universal and depends on the exponent �,

c�g,
� � g−�3+2��/�1+��. �57�

It is interesting to notice that the critical exponents in Eqs.
�55� and �56� defining the g dependence of the particle mass
spectrum at the critical point coincide with those for free
coagulation �see Ref. �2� and especially Appendix L of that
paper�. This fact is not so unexpected, because the partial
differential equations for the Laplace transforms of the par-
ticle mass spectra are very similar in both these cases. The
source term I�p� in Eq. �14� does not define the type of the
singularity at p=0, if it is not very singular itself.

B. Postgelation stage

At the postgelation stage the situation drastically changes.
The total particle mass concentration ceases to conserve. As
follows from Eqs. �21� and �23�

M�t� = G�0,t� = I1t −�2




A��0�t�� − I0� . �58�

The deficit of mass is attributed to the appearance of a gel. In
Refs. �16–18� this gel is associated with a giant particle
whose mass is comparable to the total mass of the whole
system but the concentration is zero. This gel consumes the
mass of the sol. Therefore in the thermodynamic limit we
observe the mass loss. The dependence of the sol mass con-
centration on time is shown in Fig. 2.

The expression for the total number concentration also
changes at the postgelation period,

N�t� = F�0,t� = tA��0� − �
0

�0 �2



�A��0� − A�s��ds −




6
I1

2t3.

�59�

On differentiating Eq. �59� over t we find

Ṅ = A��� −



2
I1

2t2 = I0 −



2
I1

2t2 +



2
Mgel

2 , �60�

where

Mgel =�2




A��0�t�� − I0� �61�

is the mass of the gel. The dependence of the total particle
number concentration is shown in Fig. 3.

For narrow sources �I3 exists� the postcritical mass spec-
trum is given by Eq. �40�. This equation holds also at �=1.
In the postcritical period this spectrum shrinks with time �the
value of g0�
� decreases as 
 increases�.

If the third moment does not exist the mass scale g0 de-
pends on time as a power depending on �,

g0�
� � 


−�1+��/�, �62�

and g0�
−2 otherwise. Similarly, the time dependence of the
order parameter is also algebraic,

�0�
� � 


1/�. �63�

The dependence on � disappears if the third moment of the
source is finite.

If the second moment I2 diverges, the gel formation be-
gins at t=0. There is no a pregelation stage. As follows from
Eq. �B18� of Appendix B

FIG. 2. Mass concentration vs time for initially monodisperse
particles. Thick solid line displays the time dependence of the total
sol mass concentration. This mass is seen to begin drop down with
time after the critical time. Still no violation of the mass conserva-
tion is observed, for the gel mass �dashed line� is equal to the
difference between I1t and the sol mass. Mass concentration and
time are given in units of �I2 /
 and �
I2�−1/2, respectively.
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�0�t� � t2/�1−��. �64�

The spectrum has the form

c�g,t� � t�1+��/�1−��g−�3−��/�1−��e−g/g0�t�, �65�

where

g0�t� = c��0�t� . �66�

VI. CONCLUSION

In this paper a “pathological” coagulating system has
been considered, i.e., the system whose development in time
leads to the formation of an object that is not provided for by
the initial theoretical assumptions. In our case it is the gel
whose appearance breaks the hypothesis that the kinetics of
coagulation can be described in terms of the particle number
concentrations defined as the thermodynamic limit of the ra-
tio �occupation numbers�/volume.

The source-enhanced coagulating system with the kernel
proportional to the product of the masses of two colliding
particles has been the central object of the present study. The
main decisive step that has been done in this paper is the
analytical solution of the equation for the Laplace transform
of the particle mass spectrum. The knowledge of the func-
tions F�p , t� and its derivative G�p , t� has given the full in-
formation on the time behavior of the number and mass con-
centration in pre- and postgel periods and to find the
expression for the critical time. The asymptotic analysis of
the properties of G�p , t� has allowed us to investigate the
shape of the particle mass spectrum near the critical point.

Only one scenario of gelation has been considered here.
We assumed that as in the case of free coagulation the gel
appears as one giant particle with the mass comparable to the
mass of the sol. The gel concentration is zero in the thermo-
dynamic limit, but it affects the dynamics of the sol evolu-
tion �see Refs. �16–18��.

The second �and the most widespread� scenario assumes
that after the critical time the coagulation process instantly
transfers large sol particles to a gel state, the latter being
defined as an infinite cluster. This gel can be either passive �it
does not interact with the coagulating particles� or active
�coagulating particles can stick to the gel� �12–14�. In the
latter case the gel should be taken into account in the mass
balance and no paradox with the loss of the total mass comes
up �14�.

Still neither this definition nor the postgel solution to the
Smoluchowski equation give a clear answer to the question,
what is this, the gel?

The situation becomes more clear if one considers a class
of so-called truncated models �see Refs. �2,21��. In these
models a cutoff particle mass G is introduced. The truncation
is treated as an instant sink removing very heavy particles
with the masses g�G from the system. So we have sacri-
ficed with the mass conservation from the very beginning.
The particles whose mass exceeds G form a deposit �gel� and
do not contribute to the mass balance. Of course, the total
mass of the active particles+deposit conserves. The time
evolution of the spectrum of active particles �with masses
g�G� is described by the Smoluchowski equation as before,
with the limit 	 in the loss term being replaced with the
cutoff mass G. The set of kinetic equations then becomes
finite and no a catastrophe is expected to come up. The so-
lution of the Smoluchowski equation with the external
source of particles for this scenario remains a hard nut.

APPENDIX A: EXACT GENERATING FUNCTION

For the Laplace transform of the mass spectrum

F�p,t� = �
0

	

c�g,t�e−pgdg �A1�

we have from Eq. �3�

�tF�p,t� = I�p� +



2
��pF�p,t��2 + 
M�t��pF�p,t� , �A2�

where I�p� is the Laplace transform of the source function,

I�p� = �
0

	

I�g�e−pgdg . �A3�

The solution to Eq. �A1� can be found in the form

F�p,t� = tA��� − �
p

��2



�A��� − A�s��ds + Q�p,t� ,

�A4�

where �=��p , t� is defined from the equality

FIG. 3. Number concentration vs time for initially monodisperse
particles. The gel does not contribute to N�t�, for its concentration
in the thermodynamic limit is zero. The units are the same as in
Fig. 2.
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t = �
p

� ds
�2
�A��� − A�s��

, �A5�

and the functions A�p� and Q�p , t� are not yet specified. The
function �=��p , t� which appeared first in Eq. �A4� is intro-
duced in such a way that the partial derivative of the RHS of
Eq. �4� with respect to � would be zero. Keeping this fact in
mind we can find Q�p , t� by differentiating both sides of Eq.
�A4� with respect to p and t and substituting the results into
Eq. �A2�. We have

�tF�p,t� = A��� + �tQ �A6�

and

�pF�p,t� =�2



�A��� − A�p�� + �pQ . �A7�

On substituting Eq. �A4� into Eq. �A2� yields

�tQ = I +



2
��pQ�2 + �pQ�2
�A��� − A�p�� + M�t�

�
�2
�A��� − A�p�� + 
�pQ� . �A8�

In order to get rid of �2
�A���−A�p�� we should put

�pQ + M�t� = 0 or Q = − pM�t� + C�t� . �A9�

The remainder of Eq. �A8� gives

− Ṁp + Ċ = I�p� − A�p� −



2
M2. �A10�

From this equation we find

Ċ = −



2
M2 and A�p� = I�p� + Ṁp . �A11�

Next, Ṁ should be independent of time, i.e., the above con-
sideration works only for steady-state sources. Finally we
have

C�t� = −



2
�

0

t

M2�t��dt�. �A12�

Collecting Eqs. �A9� and �A12� yields

Q�p,t� = − pM�t� −



2
�

0

t

M2�t��dt�. �A13�

The term Q does not contribute to the particle mass spectrum
and serves only for normalization purposes �the function
F�p , t� should reproduce correctly the particle mass and
number concentrations�.

APPENDIX B: EVALUATION OF INTEGRAL IN EQ. (19)

Here we evaluate the integral in Eq. �19� at small p and �.
Let

J��,p� = �
p

� ds

�2�Ã��� − Ã�s��
. �B1�

Here Ã�s�=I�s�− I0+ I1s. Below we consider separately nar-
row and wide sources.

1. Narrow sources

In evaluating the integral Eq. �B1� it is convenient to in-
troduce the new integration variable y as

2Ã�s� = y2, Ã��s�ds = ydy . �B2�

In these variables the function J�� , p� takes the form

J��,p� = ��2Ã�p�

�2Ã��� ydy

Ãs��s�y���2Ã��� − y2
. �B3�

Let us expand the ratio y /A��s�y�� over y. First of all, we
notice that at small s

Ã��s� 	 I2s − �2 + ��a�s1+�. �B4�

The function s�y� is defined from the approximate equation

I2s2 − 2a�s2+� = y2. �B5�

In the limit of small y we find

s�y� =
y

�I2

+
a�

I2
�3+��/2 y1+�. �B6�

Hence

Ã��s�y�� = y�I2 −
�1 + ��a�

I2
�1+��/2 y1+�, �B7�

and finally we have

y

A��s�y��
	

1
�I2

+
�1 + ��a�

I2
�3+��/2 y�. �B8�

Everywhere below we use the approximations p ,��1

and ��p. At small argument Ã�s�	s�I2 /2. Thus

J��,p� 	
1

�I2

arcos�p/�� +
R

�I2

��, �B9�

where

R =
�1 + ��a�

I2
�

0

1 x�dx
�1 − x2

. �B10�

On taking cosine of both parts of Eq. �B9� and applying
our convention on smallness of arguments we come to the
following equation for �:

R�1+� + � cos�t�
I2� − p = 0. �B11�

In the vicinity of the critical time we approximate
cos�t�
I2�	
, with 
= �t− tc� / tc, then we come to the result

R�1+� − 
� − p = 0. �B12�
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At the critical point 
=0 one finds

��p,tc� = �p/R�1/�1+��. �B13�

By the way, this result is the reason why we adopted the
approximation ��p, at small p.

At p=0 Eq. �B11� yields at 
�0 �after the sol-gel transi-
tion�

�0�t� = �
/R�1/�. �B14�

2. Wide sources

Here we consider the case when the second moment of
I�g� diverges, i.e., the critical time is zero and the gel appears

from the outset of the coagulation process. In this case Ã is
given by Eq. �31�. Then

J��,p� =
1

�2b�

��1−��/2�
p/�

1 dx
�1 − x1+�

. �B15�

In the limit ��p we find from Eq. �19�


 = ��1−��/2�c� −
p

�
� . �B16�

Here we introduced the notation 
= t�b�
 and c�=�0
1�1

−x1+��−1/2dx. Equation �B16� defines the function ��p , t�. It
can be solved by iterations. As the first approximation we
adopt


 = c��0
�1−��/2. �B17�

Hence

�0 = �
/c��2/�1−��. �B18�

The second approximation then gives


 = �1
�1−��/2�c� − p/�0� . �B19�

From this equation we finally get

�1�p,
� 	 �0�
��1 +
p

c��0�t�
�2/�1−��

. �B20�
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